A Distributed Recommendation Platform for Big Data
نویسندگان
چکیده
The vast amount of information that recommenders manage these days has reached a point where scalability has become a critical factor. In this work, we propose a scalable architecture designed for computing Collaborative Filtering recommendations in a Big Data scenario. In order to build a highly scalable and fault-tolerant platform, we employ fully distributed systems without any single point of failure. We study the use of data replication and data distribution technologies. Additionally, we consider different caching techniques. Taking into account these requirements, we propose particular technologies for each component of the platform. Next, we evaluate the response times of storing, generating and serving recommendations using MySQL Cluster and Cassandra showing that the latter technology is much more adequate for that purpose. Finally, we conduct a simulation for evaluating the impact of a memory caching system.
منابع مشابه
Implementation of Collaborative Filtering Approach in Preference Aware Service Recommendation
Service recommendations are shown as remarkable tools for providing recommendations to users in an appropriate way. In the last few years, the number of customers, online information and services has grown very rapidly, resulting in the big data analysis problem for service recommendation system. Consequently, there is scalability and inefficiency problems associated with the traditional servic...
متن کاملBig Data Analytics as a Service for Affective Humanoid Service Robots
This paper identifies and analyses the advanced capability requirements for humanoid service robots to serve in highly complicated and intelligence demanding applications, such as children education and home care, in future smart home environments. In particular, a Distributed Collaboration and Continuous Learning (DCCL) mechanism is identified as the key capability of a humanoid service robot ...
متن کاملA Fuzzy TOPSIS Approach for Big Data Analytics Platform Selection
Big data sizes are constantly increasing. Big data analytics is where advanced analytic techniques are applied on big data sets. Analytics based on large data samples reveals and leverages business change. The popularity of big data analytics platforms, which are often available as open-source, has not remained unnoticed by big companies. Google uses MapReduce for PageRank and inverted indexes....
متن کاملKSRS : Keyword - based Service Recommendation System for Shopping using Map - Reduce on Hadoop for Big Data
Service recommender systems are important tools for giving appropriate recommendations to users. From many years, the amount of customers, services provided to them a n d online information is growing rapidly, i t motivates for service recommender system. The traditional service recommender systems has limitations of scalability and inefficiency when analyzing or processing such large amount of...
متن کاملTowards Keyword Based Recommendation System
Recommender systems have been shown as valuable tools for providing appropriate recommendations to users. In the last decade, the amount of customers, services and online information has grown rapidly, yielding the big data analysis problem for recommender systems. Consequently, traditional service recommender systems often suffer from scalability and inefficiency problems when processing or an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. UCS
دوره 21 شماره
صفحات -
تاریخ انتشار 2015